Über die Veresterungsgeschwindigkeit der Nitrobenzoesäuren in Glyzerin

Von

Anton Kailan und Leo Lipkin

Aus dem I. Chemischen Laboratorium der Universität in Wien

(Vorgelegt in der Sitzung am 7. Juli 1927)

I. Versuchsanordnung.¹

Die Versuchsanordnung einschließlich der Bereitung des wasserfreien und wasserhaltigen Glyzerins und der glyzerinischen Salzsäure war die bei den früher mitgeteilten Versuchen über Esterbildung in Glyzerin² beschriebene. Die Probenentnahme geschah mittels eines zirka 5 cm³ fassenden Pyknometers. Das Gewicht des darin enthaltenen Reaktionsgemisches wurde stets nur vor der ersten Titration jeder Versuchsreihe bestimmt und dann im ganzen Reaktionsverlauf als konstant angenommen.

Die Titrationen wurden mit zirka $\frac{n}{10}$ Barytlauge und Phenolphthalein als Indikator ausgeführt.

Die Versuchstemperatur war durchwegs 25°.

Die Dichten der Reaktionsgemische schwankten je nach der Wasser- und Salzsäurekonzentration zwischen 1·255 und 1·265, die des verwendeten Glyzerins betrug $d\frac{25°}{4°}=1\cdot2580$.

In den folgenden Tabellen bedeuten: t die Zeit in Stunden vom Zusatze der glyzerinischen Salzsäure zur Lösung der Nitrobenzoesäure in Glyzerin bis zum Aus gießen des Pyknometers in Wasser; $a,\,c,\,w_0$ sind die Konzentrationen der zu veresternden Säuren, der Salzsäure und des Wassers in Molen pro Liter zur Zeit t=0; A und C ist der berechnete Verbrauch an Barytlauge für die im Pyknometer enthaltene organische Säure, beziehungsweise Salzsäure für $t=0,\,A-X$ ist der Verbrauch für die erstere zur Zeit t.

Die Konstanten k sind nach der Formel für monokolekulare Reaktionen und Brigg'sche Logarithmen berechnet; k_m/c ist der Mittelwert der k/c, der unter Berücksichtigung des Gewichtes $p=t^2(A-X)^2$ jeder Einzelbestimmung berechnet wurde. Die w_m sind die auf analoge Weise berechneten Mittelwerte des während der Reaktion im Mittel vorhandenen Wassers.

¹ Sämtliche Versuche wurden von Leo Lipkin ausgeführt.

² Vgl. Rec. trav. chim., 41, 592 (1922); 43, 512 (1924); Wiener Akad. Ber. II b, 133, 485 (1924); Monatsh. f. Chemie, 45, 485 (1924).

Die durch Berücksichtigung der Chlorhydrinbildung korregierten Konstanten sind mit »korr.« bezeichnet.

Zur Überprüfung der Arbeitsmethode wurde der nachstehend angeführte Versuch über die Veresterung der Benzoesäure mit Salzsäure in wasserfreiem Glyzerin ausgeführt. Dabei wurde km/c = 0.0361 für $w_m = 0.029$ gefunden, gegenüber dem von K. Heidrich¹ ermittelten $k_m/c = 0.0371$ für $w_m = 0.041$.

II. Benzoesäure.

Von der verwendeten Säure erforderten 0·4520 g 39·86 cm³ 0·09292 normale Barytlauge (ber. 39·85).

Der Schmelzpunkt betrug 121°.

Tabelle 1.

A =	3.82	C = 7.68
a =	0.0995	c = 0.2001
	$w_0 = 0$	
ŧ	A— X	k.105
0.25	3.82	
24.00	$2 \cdot 53$	746
43.02	1.87	721
66.07	1.30	709
72.1	1.15	723
	$k_m.105 = 72$	2
	km/c = 0	0361
	$w_m = 0$.	029

III. Orthonitrobenzoesäure.

Die von der Firma Kahlbaum bezogene Säure erwies sich als rein: 0.3405 g erforderten 21.93 cm² 0.09292 normaler Barytlauge (ber. 21.95).

Die Löslichkeit in Glyzerin bei 25° beträgt 0.2485 Mole pro Liter, entsprechend 3.30 Gewichtsprozenten.

Die Orthonitrobenzoesäure zeigt eine so geringe Veresterungsgeschwindigkeit, daß bei den Versuchen mit ursprünglich wasserfreiem Glyzerin die Chlorhydrinbildung in Rechnung gezogen werden muß.

¹ Vgl. A. Kailan, Rec. trav. chim., 41, 592 (1922).

Es wurde daher durch Cl-Bestimmungen nach Volhard die Geschwindigkeit der Chlorhydrinbildung in Gegenwart von Orthonitrobenzoesäure gemessen.

1. Chlorhydrinbildung bei Gegenwart von Orthonitrobenzoesäure.

Tabelle 2.1				Tab	elle 3.º		
A = 3.47 $C = 11.78a = 0.1249$ $c = 0.4240w_0 = 0$: 0.0908	C = 0 $C = 0$	= 8·11 = 0·2097		
t	A-X	C— X'	$k'.10^{5}$	t	A— X	C— X'	k'.105
167.0	2.17	11.68	5.1	42.4	3.31		
265.5	.1.69	11.61	5.5	211.1	2.60	8.03	$4 \cdot 7$
496.3	0.94	11.46	5.6	$379 \cdot 2$	2.06	$7 \cdot 93$	5.9
620.7	0.60	11.36	5.8	474.5	1.82	$7 \cdot 92$	5.0
				667.2	1.41	7.88	$4 \cdot 3$
Arithm	. Mittel o	der k' = 5	5.10^{-5} ,	Arith	n. Mittel	der k' == 5	5.10 ⁻⁵ ,
	der w =	= 0.043			der w	= 0.026	

Man kann also die Konstanten der Chorhydrinbildung bei Gegenwart von Orthonitrobenzoesäure, beziehungsweise deren Ester in fast wasserfreiem Glyzerin bei 25° zu rund 5.10^{-5} annehmen, wie dies A. Kailan und E. Goitein³ schon für die Chlorhydrinbildung in Gegenwart von Salizylsäure und Anthranilsäure, beziehungsweise deren Ester nachgewiesen haben; bei der letzteren Säure ist mit der Konzentration der sogenannten »freien« Salzsäure (c-a) zu rechnen, d. h. dem Überschuß des Chlorwasserstoffes über die Anthranilsäure, beziehungsweise deren Ester.

Es wurden deshalb bei den Versuchen mit ursprünglich wasserfreiem Glyzerin die korrigierten k-Werte aus den um den Betrag $5 \cdot 10^{-5} \cdot C \cdot t$, der »Korrektur«, vergrößerten A-X berechnet. Die einzelnen c_m bezeichnen die Konzentrationen der seit Versuchsbeginn bis zu den Zeiten t im Mittel vorhandenen Salzsäure, c_M ist der unter Berücksichtigung des Gewichtes $p = t^2 (A-X)^2$ jeder Einzelbestimmung berechnete Mittelwert der c_m .

Dagegen ergaben die mit utsprünglich wasserhaltigem Glyzerin ausgeführten Versuche — ebenfalls übereinstimmend mit dem Befunde von Kailan und Goitein — keine merkliche Chlorhydrinbildung,

¹ Vgl. Tabelie 5.

² Vgl. Tabelle 4.

³ Wiener Akad. Ber. IIb, 136, in Druck (1927).

denn, wie aus den Tabellen Nr. 10, 11, 12 und 14 ersichtlich ist, war die Abnahme von C nach 743·3, 984·7, 1894 und 1922 Stunden nur 0·02, 0·01, 0·00 und 0·04 cm^3 .

2. Versuche in ursprünglich absolutem Glyzerin.

Tabelle 4.

		= 3.51 $= 0.0908$		•	= 8·11 = 0·2097	
ŧ	A - X	Korrektur	$k.10^{6}$	k.106 korr.	105 <i>k cm</i> korr.	C111
0.21	3.50					
$42 \cdot 4$	$3 \cdot 31$	0.05	601	540	258	0.2095
143.6	$2 \cdot 87$	0.06	609	546	261	0.2090
211.1	$2 \cdot 60$	0.08	617	555	266	0.2087
$379 \cdot 2$	2.06	0.15	610	530	255	0.2078
474.5	1.82	0.19	601	510	246	0.2072
$546 \cdot 9$	1.62	0.23	614	514	248	0.2069
667.2	1.41	0.27	594	480	243	0.2062
	$k_m.10$	6 = 609		$k_{H}10^6\mathrm{korr}$. = 513	
	k_m	c = 0.00290		km/cMkorr	= 0.00247	
	c_{Λ}	I = 0.2072		$k/c_{ m ber}$	= 0.002426	
			$w_m = 0$	022		

Tabelle 5.

C = 11.78

 $k/c_{\text{ber.}} = 0.002371$

A = 3.47

 $c_M = 0.4199$

	а	= 0.1249		c =	0.4240	
t .	A— X	Korrektur	h.105	k.105 korr.	105 <i>k c</i> korr.	c_{n_l}
0.35	$3 \cdot 47$			_		
97.60	2.61	0.06	127	117	276	0.4230
167.0	2.17	0.10	122	110	261 -	0.4222
$265 \cdot 5$	1.69	0.16	118	103	244	0.4211
386.6	1.22	0.23	117	98	233	0.4200
496.3	0.94	0.29	114	91	217	0.4189
$552 \cdot 0$	0.76	0.35	119	92	220	0.4182
620.7	0.60	0.37	123	89	214	0.4174
	$k_{m.105}$	= 119		km105korr.	= 98	
	k_m/c	= 0.00280		km/cMkorr.	= 0.00234	

 $m_m = 0.039$

Tabelle 6.

	A = 4.88			C =	= 21 · 22	
	а	= 0.1095		c =	0.4760	
ŧ	A— X	Korrektur	k.105	k. 105 korr.	105k/cm korr.	c_m
0.35	4.86	_	********			PROFESSION
47.6	4.16	0.05	146	135	283	0.4754
120.7	3.32	0.13	139	125	263	0.4746
151.7	2.90	0.16	149	134	282	0.4742
170.5	2.85	0.18	137	121	256	0.4740
$296 \cdot 6$	1.94	0.31	135	113	240	0.4726
$485 \cdot 9$	1.11	0.52	132	98	208	0.4702
503.2	1.02	0.23	135	99	210	0.4701
	$k_{1H}.105$	= 137		km. 105korr.	= 112	
	k_m/c	= 0.0288		km/cMkorr.	= 0·00234	
	c_M	= 0.4720		kicber.	= 0.002393	
			$m_m = 0$	031		

Tabelle 7.

A = 3.07			C =	$C = 23 \cdot 65$		
	а	= 0.0822		c =	0.6332	
l	A-X	Korrektur	k.105	k.105 korr.	105 <i>k/c</i> korr.	c_m
0.22	3.06		Name of the last o	annerson)	remonen	
$54 \cdot 27$	2.42	0.06	190	171	270	0.6324
$92 \cdot 32$	2.08	0.11	183	159	252	0.6317
118.4	1.90	0.14	176	150	238	0.6313
166.6	1.58	0.20	173	142	225	0.6306
$199 \cdot 2$	$1 \cdot 36$	0.23	177	143	2 2 8	0.6302
267.0	1.03	0.32	178	134	213	0.6288
	$k_{m}.105$	= 178		km.105korr.		
	k_m/c	= 0.00280		km/cMkorr.	= 0.00230	
	c_M	= 0.6304		$k/c_{ m ber.}$:	= 0.002433	

 $n_m = 0.020$

Tabelle 8.

	A	= 2.79		C =	= 5.01	
	a	= 0.0987		c =	= 0.1772	
t.	A X	Korrektur	$k.10^{6}$	k. 10 ⁶ korr.	105 <i>k/c</i> korr.	c_m
0.30	2.78	e-mercen	_		_	
45.5	2.64	0.01	528	492	278	0.1770
$168 \cdot 2$	2.26	0.04	544	499	283	0.1765
$336 \cdot 2$	1.85	0.08	531	476	271	0.1758
456.0	1.61	0.11	524	461	263	0.1753
504.8	1.54	0.13	511	442	252	0.1749
620.2	1.37	0.16	498	421	241	0.1744
666.5	1.33	0.17	483	404	232	0.1742
	k_{10} . 106	= 507		km.106korr.	= 437	
	$k_{m/c}$	= 0.00286		k_{III}/c_{M} korr.	= 0.00250	
		= 0.1748			= 0.002426	
			$w_m = 0.0$)22		
			Tabelle	9.		
	A.	= 4.25		C =	= 8.71	
	а	= 0.1090		c =	= 0.2234	
ŧ	A— X	Korrektur	k.106	k.106 korr.	k c korr.	c_m
0.2	$4 \cdot 24$		_	_		_
46.55	3.95	0.02	683	636	0.00285	0.2232
212.0	3.07	0.09	667	607	0.00273	0.2223
$333 \cdot 3$	2.56	0.15	661	586	0.00265	0.2215
$399 \cdot 5$	2.36	0.17	639	564	0.00255	0.2213
547.5	1.87	0.24°	651	555	0.00252	0.2204
667.7	1.58	0.29	644	534	0.00243	0.2197
836.5	$1\cdot 27$	0.36	627	498	0.00228	0.2188
	$k_{m}.10^{6}$	== 646		km. 106korr.	= 550	
				_ ,		

Die Zahlen zeigen die Proportionalität zwischen Salzsäurekonzentration und Reaktionsgeschwindigkeit. Ordnet man die Versuche mit nahezu gleichem Wassergehalte nach steigenden HCl-Konzentrationen, so erhält man folgende Zusammenstellung:

 $w_m = 0.029$

 $k_m/c_{M \text{korr.}} = 0.00250$

 $k/c_{\text{ber.}} = 0.002402$

 $k_{m}/c = 0.00288$

 $c_M = 0.2204$

c0.1772	0.2097	0.2234	0.4240	0.4760	0.6332
<i>c</i> _M 0.1748	0.2072	0.2204	0.4199	0.4720	0.6304
$n_m \dots \dots$	0.022	0.029	0.039	0.031	0.020
k_m/c 0.00250	0.00247	0.00250	0.00234	0:00234	0.00230

Die Werte von k/c schwanken unregelmäßig um den Mittelwert 0.00241 für $w_m = 0.027$. Selbst die Abweichungen der äußersten Werte (0.00230 und 0.00250) übersteigen nicht die möglichen Versuchsfehler.

Das Absinken der korrigierten Geschwindigkeitskoeffizienten ist allerdings etwas größer als sich durch die verzögernde Wirkung des im Reaktionsverlaufe entstehenden Wassers erklären läßt. Es scheint daher die Reaktion nicht ganz zu Ende zu gehen. Dagegen spricht freilich wieder, daß man davon bei den Versuchen in wasserreicherem Glyzerin nichts beobachtet.

3. Versuche in wasserreicherem Glyzerin.

-	rabelle 1	10.	Γ	Tabelle 11.			
A = 3.1	7 C	= 24.30	A=3	05	C = 12.09		
a = 0.0	850, c	= 0.6515	a=0	0818	c = 0.3242		
1	$v_0 = 0.65$	58	1	$w_0 = 0.6$	54		
ť	A— X	k.106	t	A— X	k.106		
0.25	3.17	Theresholdy.	0.5	3.05	· 		
125.2	$2 \cdot 44$	908	166.4	2.59	427		
241.4	1.98	846	309.7	$2 \cdot 22$	445		
336.2	1.59	891	502.7	1.81	451		
408.9	1.40	868	670.1	1.60	418		
600.5	0.88	849	815.3	1.38	423		
743.3	0.751	842	984.7	1.182	419		
k11	$n_1.10^6 = 862$			$k_m . 10^6 = -$	427		
	$k_{m_i}c = 0.0$	0132		km/c = 0	0.00132		
k_i	$c_{\text{ber.}} = 0.00$	01288		$k/c_{\rm ber.} = 0$	0.001296		
	$w_m = 0.68$	82		$w_m = 0$	0.674		

¹ Nach der Cl-Bestimmung 0.77, damit erhält man k.106 = 827.

² Nach der Cl-Bestimmung 1·19, damit erhält man $k.10^6 = 415$.

Tabe	11e 12.		Tab	elle 13.		
A = 3.04	$C = \epsilon$	3.06	A = 3.16	C =	$24 \cdot 84$	
			a = 0.0844			
	0.667			= 1 · 321		
t t		7. 106	t .		5 10 B	
					n.10°	
0.66			0.58	3.13		
326.2			143.3		639	
506 · 1			319 1			
			552.2			
	1.971		720.5			
	1.502		911.5	0.84	631	
1894	$1\cdot32^3$	191				
$k_{m}.10^{6} = 193$.	$k/c_{\text{ber.}} = 0$	0.001287	$k_{m} \cdot 10^{6} = 627$	$k/c_{ m ber}$.	= 0.000883	
km/c = 0.00124			$k_m/c = 0.000$	947 <i>wm</i>	== 1 · 345	
Tabe	elle 14.		Tab	elle 15.		
A = 2.88	C = 12	2.58	A = 3.95	C =	6.97	
			a = 0.0762			
$w_0 =$: 1 · 330		$w_0 = 1 \cdot 337$			
t	A— X	k.106	t	A— X	$k.10^{6}$	
0.33	$2 \cdot 88$		0.45	3.83		
144.6	2:62	284	217.5			
650 · 1	1.91	274	$528 \cdot 2$	$3 \cdot 43$	116	
894.4	1.64	274	890.0	3.09	120	
1054			1343	$2 \cdot 77$	115	
1395	1 · 114	297	1619	2.59	113	
1636	0.954	294				
1922				-		
$k_m \cdot 10^6 = 288$	$k/c_{\rm ber.} =$	0.000880	$k_m \cdot 10^6 = 115$	$k/c_{ m ber}$.	= 0.000882	
$k_m/c = 0.000856$			$k_m/c == 0.000$			

Ordnet man die Versuche mit nahezu gleichem Wassergehalte nach steigenden Salzsäure-Konzentrationen, so erhält man:

$iv_m = 0$	0.674 bis	0.683	
c0·1562	0.3242	0.6515	Mittelwerte
$w_m \dots 0.683$	0.674	0.682	0.680
$k_m/c \dots 0.00124$	0.00132	0.00132	0.00129

¹ Nach der Cl-Bestimmung 2.00, damit erhält man $k.10^6 = 181$.

 $^{^{2}}$ » » $^{1.51}$, » » $^{k.106} = 201$.

³ Auch auf Grund der Cl-Bestimmung ergibt sich der gleiche Wert.

 $[\]pm$ Nach der Cl-Bestimmung findet man für t=1054, 1395, 1636, 1922 $A-X=1\cdot42$, $1\cdot15$. $0\cdot95$, $0\cdot84$, also innerhalb der Fehlergrenzen die gleichen Werte.

$w_m = 1.345$ bis 1352	$v_m =$	1.345	bis	1352
------------------------	---------	-------	-----	------

c0·1345	0.3389	0.6634	Mittelwerte
$w_m \dots 1.348$	1.352	1:345	1.348
k_m/c 0.000859	0.000850	0.000947	0.000882

Die Zahlen zeigen auch hier die Proportionalität zwischen der Salzsäurekonzentration und der Reaktionsgeschwindigkeit.

4. Abhängigkeit der Geschwindigkeitskoeffizienten vom Wassergehalte des Glyzerins.

Die monomolekularen Geschwindigkeitskoeffizienten der Ortho-Nitrobenzoesäure lassen sich für Zeit in Stunden, Brigg'sche Logarithmen und 25° innerhalb der Grenzen c=0.13 bis 0.7 und w=0.02 bis 1.4 durch nachstehende Gleichung in ihrer Abhängigkeit vom Wassergehalte darstellen:

$$k = \frac{c}{399 \cdot 8 + 571 \cdot 0 \, w - 22 \cdot 7 \, w^{3/2}}.$$

IV. Metanitrobenzoesäure.

Von der verwendeten Säure verbrauchten 0·2855 g zur Neutralisierung 18·39 cm³ einer 0·09292 norm. Barytlauge (ber. 18·40). Bei 25° lösen sich 3·21 g m-Nitrobenzoesäure in 100 g

1. Versuche in ursprünglich wasserfreiem Glyzerin.

Glyzerin, entsprechend 0.242 Molen pro Liter.

Tabelle 16.			Tabelle 17.			
$A = 3 \cdot 25$	C =	5.77		$A = 3 \cdot 14$	$\cdot C =$	6.51
a = 0.0842	c =	0.1496		a = 0.0819	c =	0.1698
t	A-X	k.105		t	A-X	k.105
0.2	$3 \cdot 24$	_		0.3	3.14	
4.93	3.12	360		7.08	2.94	404
$22 \cdot 86$	2.68	366		24.05	2.50	412
29.07	2.57	351		70.95	1.63	401
$46 \cdot 28$	$2 \cdot 25$	337		79.8	1.49	406
120.5	1.30	330		99 • 21	1.28	393
$144 \cdot 6$	1.06	336		148.7	0.98	
				841.5	-0:01	
$k.10^5 = 338$	$k_m c_{\text{ber.}} =$	0.02252		k.105 = 382	$k_m/c_{\rm ber.}$	= 0.02252
$k_m/c = 0.0226$	$iv_m =$	0.022	•	$k_m/c = 0.02$	v_m	= 0.022

Tabelle 18. Tabelle 19. $A = 3 \cdot 32$ $C = 7 \cdot 88$ A = 4.56 C = 12.75a = 0.0859 c = 0.2039a = 0.1182c = 0.3305t A - X k. 10 5 t A-X = k.1053:30 0.520.384.56 $2 \cdot 49$ 25.78484 7.18 4.03748

(Zu Tabellen 18 und 19.)

t	A— X	k.105	t	A— X	k.105
50.93	1.95	454	$22 \cdot 73$	3.16	701
$92 \cdot 47$	1.31	437	31.09	2.65	758
123.6	0.30	459	54.10	1.84	729
			69.21	$1 \cdot 47$	710
			93.35	0.88	715
			$627 \cdot 4$	0.03	* CONTRACTOR
$k.10^{5} = 453$	$k_m/c_{\rm ber.} =$	0.02246	$k.10^5 = 723$	km/cber.	= 0.02215
$k_m/c = 0.0222$	$iv_{m} =$	0.024	$h_m/c = 0.02$	v_m	= 0.034
То	halla 20		Та	h o 11 o 91	

Tabelle 20.

Tabelle 21.

$A = 4 \cdot 22$	C =	19.95	A = 5.21	C =	26 · 19
a = 0.1086	c =	0.5146	a = 0.1194	c =	0.6002
t	A— X	. k.105	t	A— X	k.105
0.54	4.19		0.35	5.19	
16.45	2.67	120	14.31	3.29	140
25.51	2.06	122	21.76	2.55	143
40.5	1.41	117	$24 \cdot 93$	$2 \cdot 37$	137
49.77	1.13	115	$38 \cdot 72$	1.62	131
64.52	0.81	111	47.21	1.10	143
304.6	-0.03	_	64.63	0.78	128
			$238 \cdot 3$	0.00	

$$k.10^5 = 117$$
 $k_m/c_{\text{ber.}} = 0.02215$ $k_m/c = 0.0227$ $v_m = 0.034$

$$k.10^5 = 117$$
 $k_m/c_{\text{ber.}} = 0.02215$ $k.10^5 = 137$ $k_m/c_{\text{ber.}} = 0.02203$ $k_m/c = 0.0227$ $v_m = 0.034$ $k_m/c = 0.0228$ $v_m = 0.038$

Tabelle 22.

$A = 2 \cdot 79$	C =	= 11.46
a = 0.0723	c =	= 0.2969
t	A— X	k.105
0.48	2.77	
18:62	2.08	685
42.27	1 • 49	644
49.75	$1 \cdot 32$	653
67.80	0.96	683
498.3	-0.02	
$k_m.105 = 663$	$k_{m}/c_{\mathrm{ber.}} =$	= 0.02261
$k_m/c = 0.0223$		= 0.019

Ordnet man die Versuche mit ungefähr gleichem Wassergehalte nach steigenden Salzsäurekonzentrationen, so ergibt sich:

c0.1496	0.1698	0.2039	0.2969	0.3302	0.5146	0.6002
$w_m \dots 0.022$	0.022	0.024	0.019	0.034	0.034	0.038
$k_m/c \dots 0.0226$.	0.0225	0.0222	0.0223	0.0219	0.0227	0.0228

Obige Zahlen zeigen wieder, daß in ursprünglich wasserfreiem Glyzerin Proportionalität zwischen Reaktionsgeschwindigkeit und Salzsäurekonzentration herrscht. Die k_m/c schwanken um den Mittelwert 0.0224 für $w_m \equiv 0.027$ und die Abweichungen der äußersten Werte (0.0222 und 0.0228) übersteigen noch nicht die Grenze der möglichen Versuchsfehler.

Aus den nach verhältnismäßig sehr langen Zeiten ausgeführten Bestimmungen scheint hervorzugehen, daß die Reaktion nicht völlig zu Ende geht. Denn mit dem Werte $k'=5\cdot10^{-5}$ für die Geschwindigkeitskonstante der Chlorhydrinbildung erhält man bei den Tabellen 17, 19, 20, 21 als Gleichgewichtswerte für die korrigierten $A-X0\cdot26$, $0\cdot37, 0\cdot27, 0\cdot31$ cm^3 , entsprechend einer 92 bis $94^{\circ}/_{\circ}$ igen Veresterung. Da die Messungen sich aber auf einen nicht sehr weit vorgeschrittenen Umsatz beziehen, kann die Gegenreaktion auch hier noch vernachlässigt werden.

2. Versuche in wasserreicherem Glyzerin.

Tat	elle 23.		Tah	elle 24.	
				A = 2.68 $C = 10.31$	
			a = 0.0867		
v	= 0.647			= 0.654	
t		k.105			k.105
0.52	$2 \cdot 62$		0.45	2.67	
	$2 \cdot 30$	206	8.31	$2 \cdot 47$	426
50.75	2.05	213	$25 \cdot 91$	2.16	361
$121 \cdot 2$	1.48	206	$53 \cdot 5$	1.71	365
165.0	1:30	185	79.61	1.28	403
213.9	1.02	193	150.8	0.74	371
$260 \cdot 5$	0.82	188	814.0 -	- 0.02	
$k_m \cdot 105 = 193$	$km/c_{\rm ber.} =$	0.01159	k_{m} . 105 == 379	$k_m/c_{\rm ber}$	= 0.01153
			$k_{m/c} = 0.011$		
Tab	elle 25.		Tab	elle 26.	
Tab A = 5·32			T ab $A=4\cdot 62$		
$A = 5 \cdot 32$	C =	10.38		C =	36 · 43
$A = 5 \cdot 32$ $a = 0 \cdot 0862$	C =	10.38	A = 4.62 $a = 0.0884$	C =	36·43 0·6971
$A = 5 \cdot 32$ $a = 0 \cdot 0862$	C = c = 0.662	10·38 0·1682 k,10 ⁵	A = 4.62 $a = 0.0884$	C = c = 0.668	36·43 0·6971
$A = 5.32$ $a = 0.0862$ $w_0 = \frac{t}{0.29}$	C = c = 0.662	10·38 0·1682 k.10 ⁵	$A = 4 \cdot 62$ $a = 0 \cdot 0884$ $w_0 =$	C = c = 0.668	36·43 0·6971
$A = 5.32$ $a = 0.0862$ $w_0 = \frac{1}{2}$	C = c = 0.662 $A - X$	10·38 0·1682 k.10 ⁵	$A = 4 \cdot 62$ $a = 0 \cdot 0884$ $w_0 = 0$	C = c = 0.668 $A - X$ 4.60	36·43 0·6971 *\hbar{k.105}
$A = 5.32$ $a = 0.0862$ $w_0 = \frac{t}{0.29}$	C = c = 0.662 $A - X$ 5.30 4.70	10·38 0·1682 k.10 ⁵ ————————————————————————————————————	$A = 4.62$ $a = 0.0884$ $w_0 = \frac{l}{0.47}$	C = c = 0.668 $A - X$ 4.60 2.98	36·43 0·6971 1.105 — 788.
$A = 5.32$ $a = 0.0862$ $w_0 = 0.29$ 27.1 50.06	C = c = 0.662 $A - X$ 5.30 4.70	10·38 0·1682 k.10 ⁵ ————————————————————————————————————	$A = 4.62$ $a = 0.0884$ $w_0 = \frac{1}{0.47}$ 24.16	C = c = 0.668 $A - X = 4.60$ 2.98 2.16	36·43 0·6971 k.10 ⁵ — 788
$A = 5 \cdot 32$ $a = 0 \cdot 0862$ $w_0 = 0$ $0 \cdot 29$ $27 \cdot 1$ $50 \cdot 06$ $71 \cdot 33$	C = c = 0.662 $A - X$ 5.30 4.70 4.34	10·38 0·1682 k.10 ⁵ ————————————————————————————————————	$A = 4 \cdot 62$ $a = 0 \cdot 0884$ $w_0 = 0.47$ $24 \cdot 16$ $41 \cdot 20$	C = c = 0.668 $A - X$ 4.60 2.98 2.16 1.85	36·43 0·6971 k.10 ⁵ — 788 _ 801
$A = 5 \cdot 32$ $a = 0 \cdot 0862$ $w_0 = 0$ $0 \cdot 29$ $27 \cdot 1$ $50 \cdot 06$ $71 \cdot 33$	C = c = 0.662 $A - X$ 5.30 4.70 4.34 3.94 3.41	10·38 0·1682 k.10 ⁵ ————————————————————————————————————	$A = 4 \cdot 62$ $a = 0 \cdot 0884$ $w_0 = 0.47$ $24 \cdot 16$ $41 \cdot 20$ $48 \cdot 25$	C = c = 0.668 $A - X$ 4.60 2.98 2.16 1.85 1.22	36·43 0·6971 ***.105 — 788 - 801 824
$A = 5 \cdot 32$ $a = 0 \cdot 0862$ $w_0 = 0$ $0 \cdot 29$ $27 \cdot 1$ $50 \cdot 06$ $71 \cdot 33$ $98 \cdot 05$	C = c = 0.662 $A - X$ 5.30 4.70 4.34 3.94 3.41 2.44	10·38 0·1682 ***,10 ⁵ ———————————————————————————————————	$A = 4 \cdot 62$ $a = 0 \cdot 0884$ $w_0 = 0.47$ $24 \cdot 16$ $41 \cdot 20$ $48 \cdot 25$ $72 \cdot 37$	C = c = 0.668 $A - X$ 4.60 2.98 2.16 1.85 1.22	36·43 0·6971 k.10 ⁵ — 788 - 801, 824 799
$A = 5 \cdot 32$ $a = 0 \cdot 0862$ $v_0 = 0$ $0 \cdot 29$ $27 \cdot 1$ $50 \cdot 06$ $71 \cdot 33$ $98 \cdot 05$ $182 \cdot 1$ $239 \cdot 0$	C = c = 0.662 $A - X = 5.30$ 4.70 4.34 3.94 3.41 2.44 1.97	10·38 0·1682 ***.10 ⁵ ———————————————————————————————————	$A = 4 \cdot 62$ $a = 0 \cdot 0884$ $w_0 = 0.47$ $24 \cdot 16$ $41 \cdot 20$ $48 \cdot 25$ $72 \cdot 37$ $89 \cdot 31$	C = c = 0.668 $A - X$ 4.60 2.98 2.16 1.85 1.22 1.03 0.94	36·43 0·6971 k.10 ⁵ — 788 - 801 824 799 730
$A = 5 \cdot 32$ $a = 0 \cdot 0862$ $v_0 = 0$ $0 \cdot 29$ $27 \cdot 1$ $50 \cdot 06$ $71 \cdot 33$ $98 \cdot 05$ $182 \cdot 1$	C = c = 0.662 $A - X = 5.30$ 4.70 4.34 3.94 3.41 2.44 1.97	10·38 0·1682 k.10 ⁵ ————————————————————————————————————	$A = 4 \cdot 62$ $a = 0 \cdot 0884$ $w_0 = 0.47$ $24 \cdot 16$ $41 \cdot 20$ $48 \cdot 25$ $72 \cdot 37$ $89 \cdot 31$ $89 \cdot 72$	C = c = 0.668 $A - X$ 4.60 2.98 2.16 1.85 1.22 1.03 0.94 -0.04	36·43 0·6971 k.10 ⁵ — 788 801 824 799 730 771

Tabelle 27.			Ta	belle 28.	
$A = 2 \cdot 57$	C =	$9 \cdot 43$	A = 4.00	C =	9.21
a = 0.0865	c =	0.3172	a = 0.0767	c =	0·1766
w_{0}	= 1.351		iv_0	= 1.336	
t	A— X	k.105	t	A— X	k.105
0.51	$2 \cdot 57$		0.37	3.98	
49.43	1.95	243	48.91	3.42	139
93.16	1.54	239	93.01	2.97	139
118.3	1.38	228	185.2	2.19	141
168.2	1.05	231	263.5	1.78	133
210.1	0.82	236	334.3	1 • 41	135
$233 \cdot 1$	0.71	240	402.7	1 · 19	131
k_m . 105 = 235	$k_m/c_{\rm ber.} =$	0.00744	$k_m \cdot 10^5 = 135$	$km c_{\rm ber}$.	= 0.00751
$k_m/c = 0.0074$	$v_m =$	1:375	$k_{m}/c = 0.00$	766 <i>ivm</i>	= 1.357

Tabelle 29. C = 19.50A = 2.08a = 0.0675c = 0.6324 $iv_0 = 1.341$ ŧ A—Xk.1050.59 2.07 6.50 1.92 535 24.55 1.61 453 77:00 0.40473 80.91 0.88 462 119.3 0.58 465 532.9 0.01 $k_{m} \cdot 10^{5} = 465$ $k_m/c_{\text{ber.}} = 0.00746$ km/c = 0.00736 $w_m = 1.359$

Ordnet man die Versuche mit ungefähr gleichem Wassergehalte nach steigenden Salzsäurekonzentrationen, so ergibt sich:

	$iv_m = 0$	670 bis 0 · ·	689.	
$v_m = 0.01568$	0·1682 0·682	0·3334 0·677	0.6971 0.689	Mittelwerte 0 • 680
$k_m/c \dots 0.0123$	0.0110	0.0114	0.0113	0.0115
	$w_0 = 1$	336 bis 1 · 3	351	
c0·1766	0.31	72	0.6324	Mittelwerte
$w_m \dots 1.357$	1.37	5	1.359	1.364
k'c 0:00766	0.00	7/11	0.00738	0.00748

Die Zahlen zeigen, daß in wasserreicherem Glyzerin auch bei dieser Säure die Veresterungsgeschwindigkeit der Chlorwasserstoffkonzentration proportional ist.

Anzeichen dafür, daß die Reaktion nicht zu Ende geht, sind hier ebensowenig wie bei der Veresterung der o-Nitrobenzoesäure in wasserreicherem Glyzerin vorhanden.

3. Abhängigkeit der Geschwindigkeitskonstanten vom Wassergehalt.

Zwischen den Grenzen c=0.15 bis 0.7 und w=0.02 bis 1.4 lassen sich die monomolekularen Geschwindigkeitskoeffizienten der m-Nitrobenzoesäure für Brigg'sche Logarithmen, Zeit in Stunden und 25° durch nachstehende Gleichung als Funktionen vom Wassergehalte darstellen:

$$k = \frac{c}{43 \cdot 08 + 59 \cdot 73 \, w + 5 \cdot 740 \, w^{3/2}}.$$

V. Paranitrobenzoesäure.

Die verwendete Säure war ein Kahlbaum'sches Präparat; 0.1342~g benötigten zur Neutralisierung $8.20~cm^3$ 0.09791 norm. Barytlauge (ber. 8.21). In wasserfreiem Glyzerin beträgt die Löslichkeit bei $25\,^\circ$ nur 0.03 Mole pro Liter entsprechend 0.4 Gewichtsprozenten.

1. Versuche in wasserfreiem Glyzerin.

	Γ	abelle 30.		
	$A = 2 \cdot 39$	(C = 15.42	
	a = 0.0262	1	c = 0.1693	
t	A— X	A— X korr.1	k.105	kkorr105
0.41	2.38	2.38		
9.75	2.13	2.14	513	492
33.05	1.67	1.69	471	452
50.41	1.34	1.38	498	473
75.7	1.06	1.12	467	435
$104 \cdot 2$	0.75	0.83	483	441
$k_{m}.105 = 480$	km/cber	= 0.02935	k_{Ink}	orr. $= 449.10-5$
$k_m/c = 0.028$	101	n = 0.007	$\frac{k_{mk}}{c}$	$=265 \cdot 10_{-4}$

Tabelle 31.

$A = 2 \cdot 47$		$C = 21 \cdot 73$ $c = 0 \cdot 2384$		
a = 0.0271				
t	A - X	k.105	$k_1.105^{2}$	
0.75	2.49	~~~~	-	
8.11	2.17	693	820	
31.25	1.44	750	780	

¹ Mit Berücksichtigung der Chlorhydrinbildung.

² Von t = 0.75, A - X = 2.49 ab gerechnet.

	(Zu Tabe	lle 31.)	
ŧ	A— X	k.105	$k_1.1051$
55.05	0.97	737	747
71.33	0.77	710	717
$125 \cdot 2$	0.34	688	695
381 • 1	-0.03	*	era annom
$k_{m} \cdot 10^{5} = 75$	$k_m/c = 0.0$	$k_m/c_{\text{ber.}} =$	0.02925
$iv_m = 0$	k_{1m} , $10^5 =$	$=737 \qquad \frac{k_{1}m}{c} = 0$.0309

Tabelle 32.

Tabelle 33.

A = 2.78	C =	33.80	$A = 2 \cdot 14$	C =	63 · 47
a = 0.0305	c =	0.3706	a = 0.0203	c =	0.6023
t	A— X	k.104	t .	A— X	k.104
0.51	$2 \cdot 77$		0.49	2.11	
17:11	1.82	107	13.4	1.22	182
$24\cdot 25$	1.47	114	16.3	1.05	190
40.86	1.06	102	21.6	0.80	174
43.52	0.97	106	21.7	0.86	182
72.70	0.46	108	$23 \cdot 3$	0.85	179
$73 \cdot 21$	0.43	111	278:5	0.04	_
$k_m \cdot 10^4 = 107$	$k_m/c_{\rm ber.} =$	-0.02921	$k_m \cdot 10^4 = 181$	$k_m/c_{ m ber}$	= 0.02941
$k_m/c == 0.0289$	$iv_{in} =$	= 0.010	$k_m/c = 0.030$	00 11/11	= 0.000

Tabelle 34.

Tabelle 35.

A = 2.09	C = 68.39		$A = 2 \cdot 25$	C = 67.61		
a = 0.0198	c =	0.6471	a = 0.0221	c =	0.6641	
t	A— X	k.104	t	A-X	k.104	
0.39	2.09	···	0.18	$2 \cdot 24$		
5.31	1.62	208	3.21	1.91	222	
10.12	1.38	178	4.50	1.87	179	
25.40	0.68	192	10.71	1.38	198	
26.71	0.67	185	23.83	0.78	196	
283.4	-0.01	_				
$k_m \cdot 10^4 = 188$	$k_m/c_{\text{ber.}} =$	0.02941	k_{m} . 10 ¹ = 196	km/cher.	= 0.02945	
$k_{IR} c = 0.0290$	$Iv_{m} =$	= 0·006	$k_m/c = 0.0296$	3 12'111	= 0.005	

Ordnet man die Versuche mit annähernd gleichem Wassergehalte nach steigenden Salzsäurekonzentrationen, so erhält man:

 $^{^{1}}$ Von $t=0.75,~A{--}X=2.49$ ab gerechnet.

$w_0 = 0$								
c0·1693	0.2384	0.3706	0.6023	0.6471	0.6641			
$w_{mi} \dots 0.007$	0.008	0.010	0.006	0.006	0.005			
$k_{m_i}^{\ i}c$ 0.0284	0.0305	0.0289	0.0300	0.0290	0.0296			

Mittelwerte: $w_m = 0.008$ $k_m/c = 0.0293$

Die Zahlen beweisen, daß in wasserarmem Glyzerin auch bei dieser Säure die Veresterungsgeschwindigkeit der Chlorwasserstoffkonzentration proportional ist.

Die bei den Versuchen 31, 33 und 34 nach verhältnismäßig sehr langen Zeiten angestellten Bestimmungen zeigen, daß die Reaktion praktisch zu Ende geht. Denn mit Berücksichtigung der Chlorhydrinbildung erhält man für die betreffenden A-X 0.01, 0.05, 0.09 cm^3 entsprechend einer 99.6 bis $95.7^0/_0$ igen Veresterung.

2. Versuche in ursprünglich wasserhaltigem Glyzerin.

		~ for 111.00 -00.					
Ta	belle 36.		Tabelle 37.				
A = 5.09	C = 3	30 · 34	$A = 4 \cdot 41$	C =	63.83		
a = 0.026	c =	0.1556	a = 0.0227	c =	0.3280		
w_0	=0.660		w_0 =	= 0.667			
t	A— X	k.105	t	A— X	k.105		
0.40	5.08	Plant France	0.35	4.40			
25.91	4.44	229	24.66	3.30	511		
48.83	3.99	216	46.81	2.53	515		
65.01	3.61	230	68 · 16	2.04	491		
98.21	3.11	218	93.33	1.58	478		
139.5	$2 \cdot 47$	225	115.2	1 · 21	487		
164.3	$2 \cdot 27$	213	124.1	1.14	474		
	1.82						
$k_m \cdot 10^5 = 217$	$k_{m_i}c_{\text{ber.}} =$	0.01443	$k_m \cdot 10^5 = 489$	km/cber	·, = 0·01435		
$k_m c = 0.0139$			km/c = 0.014				
Ta	belle 38.		Tab	elle 39			
A = 2.69	C = 6	38 · 39	A = 2.81	C =	69.02		
a = 0.0259) c=	0.6591	a = 0.0271	c =	0.6650		
v_0	=0.662		iv_0 =	= 1 · 331			
<i>1</i>	A— X	k.104	t	A - X	k.105		
0.47	2.69	AMPERIOR	0.34	2.80			
8.37	2.23	97	24.80	1.96	631		

(Zu Tabellen 38 und 39.)

t	A— X	k.104	t	A— X	k.105
25.37	1.45	106	38.91	1.61	622
31.08	1.39	92	49.21	$1 \cdot 34$	653
$46 \cdot 37$	1.02	91	55.06	1 · 21	664
52.71	0.86	94	70.51	0.99	643
387.0	- 0.04		95.01	0.69	642
$k_m \cdot 10^4 = 95$	km cher. =	0.01441	$k_m \cdot 10^5 = 645$	kın/cher.	= 0.00959
$k_{m}/c = 0.014$			$k_m/c = 0.008$		
•					
			,	•	
Ta	ibelle 40.		Tal	oelle 41.	
$A = 2 \cdot 70$	C = 3	34·47	$A = 4 \cdot 84$	C = 3	33 · 10
a = 0.0266	0 c =	0.3322	a = 0.0246	c =	0.1678
	= 1.332			= 1.330	
t	, A—X	k 105	t		k.105
					n.10 -
•			0.49		_
27.55	$2 \cdot 19$	330	$47 \cdot 33$	4.06	161
48.42	1.90	315	$75 \cdot 55$	3.69	156
71.26	1.56	334	98.01	3.31	168
96.3	$1 \cdot 28$	337	$140 \cdot 2$	2.86	163
119.8	1.15	309	195.2	$2\cdot 46$	151
168.8	0.83	305	239 · 1	2.03	158
982.0	0.02		287.0	1.74	155
$k_m.10^5 = 319$	$k_m/c_{\rm ber.} =$	0.00959	$k_m \cdot 10^5 = 157$	km/cber.	=0.00960

Die nach verhältnismäßig sehr langen Zeiten ausgeführten Bestimmungen lassen erkennen, daß auch in wasserreicherem Glyzerin die Reaktion praktisch zu Ende geht.

 $k_m/c = 0.0094$ $v_m = 1.336$

 $k_m/c = 0.0096$ $v_m = 1.339$

Ordnet man die Versuche mit angenähert gleichem Wassergehalte nach steigenden Salzsäurekonzentrationen, so ergibt sich folgende Zusammenstellung:

	$m_m = 0.666$ bis	s 0.674		
c0.1556	0.3280	0.6591	Mittelwerte	
$w_m \dots 0.666$	0.674	0.668	0.669	
$k_m/c \dots 0.0139$	0.0149	0.0143	0.0144	
	$w_m = 1.336$ bis	s 1·339		
c0.1678	0.3322	0.6650	Mittelwerte	
$w_m \dots 1.336$	1.339	$1 \cdot 339$	1 · 3 38	
$k_m/c \dots 0.0094$	0.0096	0.0097	0.0096	

Die Zahlen zeigen wieder, daß in wasserreicherem Glyzerin auch bei dieser Säure die Veresterungsgeschwindigkeit der Salzsäurekonzentration proportional ist.

3. Abhängigkeit der Geschwindigkeitskonstanten vom Wassergehalt.

Die Abhängigkeit der monomolekularen Geschwindigkeitskoeffizienten der Paranitrobenzoesäure vom Wassergehalt läßt sich zwischen den Grenzen c=0.15 bis 0.7 und w=0.008 bis 1.34 für Zeit in Stunden, Brigg'sche Logarithmen und 25° durch nachstehende Gleichung ausdrücken:

$$k = \frac{c}{33 \cdot 68 + 55 \cdot 13 \ w - 2 \cdot 067 \ w^{3/2}}.$$

VI. Vergleich mit der Veresterungsgeschwindigkeit mit äthylalkoholischer Salzsäure.

Nachstehend sind für die drei Nitrobenzoesäuren die monomolekularen Geschwindigkeitskoeffizienten — für Brigg'sche Logarithmen, Stunden und 25° — für die Veresterung in Äthylalkohol¹ und in Glyzerin für einige Chlorwasserstoff- und Wasserkonzentrationen berechnet.

Der Index a bezieht sich auf Alkohol, der Index g auf Glyzerin. In der Prozentkolonne sind die Konstanten in Prozenten der für die gleiche Salzsäurekonzentration bei einem mittleren Wassergehalte von 0.030 Molen pro Liter gefundenen angegeben. In den Rubriken v_a und v_g sind unter b, beziehungsweise on die Konstanten der betreffenden Säuren in Vielfachen der Konstanten der Benzoesäure (b), beziehungsweise Orthonitrobenzoesäure (on) für die gleiche Salzsäure- und mittlere Wasserkonzentration angeführt.

Wie aus nachstehender Zusammenstellung hervorgeht, sind bei den drei Nitrobenzoesäuren die Konstanten der Veresterungsgeschwindigkeit in Äthylalkohol bei w = 0.030 um 41 bis 66%, bei w = 0.065 um 24 bis 42%, größer als in Glyzerin.

In wasserreicheren Medien verschiebt sich entsprechend der viel stärkeren verzögernden Wirkung des Wassers in Äthylalkohol namentlich bei kleineren Salzsäurekonzentrationen das Verhältnis immer mehr zugunsten des Glyzerins: Bei w=0.733 und $c={}^2/_3$ werden in beiden Medien ungefähr die gleichen Konstanten gefunden, bei $c={}^1/_3$, beziehungsweise ${}^1/_6$ sind die Konstanten in Äthylalkohol nur mehr 65 bis $68\,^0/_0$, beziehungsweise 46 bis $48\,^0/_0$ von denen in Glyzerin und bei w=1.346 bloß 36 bis $44\,^0/_0$, beziehungsweise 25 bis $31\,^0/_0$, für $c={}^2/_3$ dagegen immerhin noch 63 bis $75\,^0/_0$.

¹ Ann. d. Ch., 351, 186 (1906).

Säure	411	с	Alko	hol	Glyz	erin	k_a	v_{α}		1' &	;
Saure	w_{ml}	ι	k.103	0/0	$k.10^{3}$	0/0	k_g	b	o_n	b	o_{n}
żι	(0.030	1/6			0.396	100				0.0608	1
Orthonitro- benzoe-	0.065	1/6	0.472		0.385	96.5	1.24	0.0536	1	0.0682	1
tho	0.733	1/6	_		0.207	$52 \cdot 4$	_			0.1039	1
Ö	(1.346)	$^{1}/_{6}$			0.147	$37 \cdot 2$	-	_	_	0.0955	1
	(0.030	1/6	6.15	100	3.71	100	1.66	0.579		0.570	9.32
-50	0.065	$^{1/}_{6}$	5.03	81.7	3.54	$95 \cdot 4$	$1 \cdot 42$	0.571	10.7	0.635	$9 \cdot 27$
nzc	1 (1/6	0.854	13.9			0.464	0.593	_))	
ohe	Jo·733{	$\frac{1}{6}$ $\frac{1}{3}$ $\frac{2}{3}$	2.50	21.5	1.84	49.6	0.678	0.620		0.923	8.89
itr) (7.90	40.3			1.072	0.699	-)	ļ	
Metanitrobenzoe-	1 ($\frac{1}{6}$	0.394	6.41)			0.313	0.624)	
Μ̈́	1 · 346	$^{1}/_{3}$	1.095	9.44	1 · 26	33.0	0.435	0.630		0.817	8.55
	($^{2}/_{3}$	3.75	19.1			0.746	0.698	_ ;	i	
	(0.030	1/6	6.64	100	4.72	100	1.41	0.625		0.725	11.9
-	0.065	$^{1}/_{6}$	6.13	$92 \cdot 3$	4.48	$94 \cdot 9$	$1 \cdot 37$	0.696	13.0	0.799	11.7
nzc	1 ($^{1}/_{6}$	1.09	16.4			0.476	0.757	-)		
)pe	J0·733{	1/ ₆ 1/ ₃	$2 \cdot 96$	22.1	2.59	48:5	0.647	0.735	-	1.12	11.1
itre) ($^{2}/_{3}$	8.91	33.1			0.972	9.788	—))	
Paranitrobenzoe-	1 (1/6	0.405	6.10			0.254	0.651	-)		
Pa	1.346	$\frac{1}{6}$ $\frac{1}{3}$ $\frac{2}{3}$	1.15	6.81	1.59	33.8	0.361	0.990		1.04	10.8
	(($^{2}/_{3}$	3.99	14.8			0.626	0.742	—)	,	

Ebenso wie in Äthylalkohol ist auch in Glyzerin der verzögernde Einfluß des Wassers auf die Veresterungsgeschwindigkeit bei der Benzoesäure größer als bei den Nitrobenzoesäuren, was mit dem Befunde bei anderen aromatischen und insbesondere aliphatischen Säuren übereinstimmt.

Für $c={}^1/_6$ und w=0.065 ist das Verhältnis der Konstanten der Benzoesäure zu denen der drei Nitrobenzoesäuren in Äthylalkohol 1:0.054:0.57:0.70, in Glyzerin 1:0.068:0.63:0.80, das der Konstanten der Ortho-, Meta- und Paranitrobenzoesäure in Äthylalkohol 1:10.7:13.0, in Glyzerin 1:9.27:11.7. Der Unterschied der Konstanten der Veresterungsgeschwindigkeiten der drei Nitrobenzoesäuren zu der der Benzoesäure und der Meta- und Para- zur Orthonitrobenzoesäure ist also in Glyzerin etwas kleiner als in Äthylalkohol. Die Verschiebung zugunsten der Orthosäure ist indessen weit kleiner als sie bei den Oxybenzoesäuren sowohl in Glyzerin als auch in Glykol beobachtet worden ist.

Zusammenfassung.

Es werden die Veresterungsgeschwindigkeiten der Nitrobenzoesäuren bei 25° sowohl in absolutem als auch in wasserhaltigem Glyzerin mit Chlorwasserstoff als Katalysator gemessen und die monomolekularen Geschwindigkeitskoeffizienten der Konzentration des letzteren proportional gefunden. Ihre Abhängigkeit vom Wassergehalt wird durch Formeln dargestellt. Bei der Orthonitrobenzoesäure muß die Chlorhydrinbildung berücksichtigt werden.

Unter den Versuchsbedingungen findet praktisch vollständige oder fast vollständige Veresterung statt, so daß die Wiederverseifung vernachlässigt werden kann. Für 0.07 norm. Wasserkonzentration sind die Koeffizienten in Glyzerin etwa um ein Viertel kleiner als in Äthylalkohol, für 0.7 norm. Wasser- und 0.167 norm. Salzsäurekonzentration dagegen mehr als doppelt so groß, entsprechend der viel geringeren verzögernden Wirkung des Wassers in Glyzerin. Die letztere ist bei den Nitrobenzoesäuren etwas kleiner als bei der Benzoesäure, was mit früheren Befunden übereinstimmt.

Der Unterschied zwischen den Geschwindigkeitskoeffizienten der drei Nitrobenzoesäuren zu denen der Benzoesäure und der *m*- und *p*- zur *o*-Nitrobenzoesäure ist in Glyzerin etwas kleiner als in Äthylalkohol, doch ist die Abweichung im letzteren Falle sehr viel kleiner, als sie sich bei den Oxysäuren sowohl in Glyzerin als auch in Äthylalkohol ergeben hatte.

Vorliegende Untersuchung ist teilweise mit Unterstützung der »van't Hoff-Stiftung« ausgeführt worden. Wir sprechen dafür auch an dieser Stelle unseren Dank aus.